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Introduction

Currently,around 20,000 orbiting objects(includingsatellitesand spacedebris elementslargerthan 10cm) are beingtracked by the North
AmericanAerospaceDefenceCommand(NORAD)and this Is expectedto rise. Findingthe most efficient way to monitor and update this
extensivecataloguepresentsa substantialoptimisationproblem In this poster, we presentmethodsand resultsfor a Python-basedobject-
trackingschedulermprogramdevelopedin collaborationwith the SpaceEnvironmentResearclCentre(ResearcliProgram3). We successfully
generateschedulego track 2,000 objectssimultaneouslywithin a 24 hour period usingopticalandlasertrackingsensors

ScheduleMethodology

Theimplementedschedulerutilisesa seriesof
predictions and simulated measurementsto
determine the optimal sensorobject pairings
for each variable "assignmentwindow". For
each sensorQ @ A a2A002f Pl & reward
metric (see Information Gain) Is computed,
and compiledinto a reward dictionary (Figure
2). An auction algorithm is usedto selectthe
sensorobject pairs that maximise the total
iInformation gained[2]. In this casesimulated
observations are performed, and the
remaining objects In the catalogue are
propagatedforward.

Figure 2. Scheduldrsensor/object selectigg

Information Gain

Selectionof objectsto-track for eachsensoris
performed based on Iinformation gain - the
larger the reduction in uncertainty of object
position a measurementwould provide, the
higher the preferenceis for that object to be
tracked We quantify the Information gain
usingthe RenyiEntropy[1] or the covariance
change(determinedusinga unscentedkKalman
filter) of the trackedobject(Figurel).
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Covariance

Thecovariancematrix is an expressiorfor the uncertaintyin positionand velocity of
the tracked object (Figure 3), with the diagonal terms indicating conventional
variance,and the off-diagonalsrepresentingcovariancepairs Viewingthe along
track covariancegrowth. Figure 1 shows characteristicbuild-up and collapse as
objectsare selectedto be sensed
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Reduceddle time

Theschedulemwassuccessfullyun on lists of 200and 20000bjectsto benchmarkthe

performance All sensorsare now continuouslyengagedhroughout the observation
period, mitigating Iidle time. The program now accounts for asynchronous
assignmentwindows, computing the cumulative information gain from multiple

observations, scaling the information gain for high priority targets, and adding
constraintson lasermeasurements
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